特邀报告(Keynote):Analytic knowledge graph for healthcare
演讲者:Sheng-Yhuan Wu,Franz. Inc.

Abstract: Since sequencing of the human genome in 2003, we have dreamed about treating patients more effectively based on their genomic profiles. Such a dream remains elusive. “The fundamental difficulty lies in the complexity of biological systems that have evolved through billions of years.” On the other hand, major progress can be and has been made in “personalized medicine” by applying classic AI machine learning on the massive patient medical data accumulated. In essence, we can uncover new insight from the data to help patients without knowing the why a priori. Such new insight is then added back into the medical knowledge to form a richer knowledge graph for analysis later. Exploiting patient medical data brings another set of management problems, namely the heterogeneous nature of data sources and taxonomies, the enormous size of data volume, and huge analytic processing requirements. At this talk, we will discuss all these issues and show some examples at a major research hospital in New York City.

Speaker Bio:Dr. Sheng-Chuan Wu received his Ph.D. in Scientific Computing and Computer Graphics from Cornell University in the US. He has, since graduation, involved in several software companies, including the founding of the first integrated CAD/CAM/CAE company. In the last 20 years, he worked as a senior corporate executive at the leading Artificial Intelligence and Semantic Technology company, Franz Inc in Silicon Valley, with responsibility in application development, marketing, consulting and new business development. Dr. Wu has also in many occasions collaborated with Bioinformatics experts from Harvard Medical School, Stanford University and Astra Zeneca, working with massive biological data. Dr. Wu has been focusing on Semantic Technology over the last 8 years. He routinely lectured and keynoted on AI and Semantic Technology at conferences. Most recently, he was a keynote speaker at KSEM 2015 in China, at KMO 2016 in Germany and PRICAI 2016 in Thailand. He has, since 2007, conducted more than 20 week-long workshops on Semantic Technology and Artificial Intelligence in Malaysia, China, Singapore, India and other Asian countries. Dr. Wu has also consulted on several Big Data and Semantic Technology projects in the US and Asia.

特邀报告(Keynote):拓尔思水晶球——基于动态本体的知识管理工具
演讲者:刘瑞宝,拓尔思

报 告 摘 要 : 随着信息爆炸的大数据时代的到来,信息来源五花八门,各行业领域都需要专业的分析 师通过数据分析来解决问题和揭示数据背后的秘密,这也是大数据分析师的工作。在互联网上Yago、Dbpedia、Freebase、百度百科等也建立起了各种面向知识关联的应用和服务,拓尔思水晶球 通过对实体概念、实体属性、实体与实体之间关系,建立起基于动态本体的知识管理体系,本体定义基于对象的数据模型, 支持动态的本体定义,数据从多源的数据格式,被转换映射为统一的数据对象,关 联现实世界中的人、地点、事物、事件以及之间的关系。结合 NLP 技术,不仅可以从结构化数据中获取知识, 还能从非结构化数据中发现和挖掘知识。本次将从实战的角度,分享通过拓尔思水晶球获取知识、建立知识图 谱、挖掘知识内涵的全过程。

个人简介:北京拓尔思信息技术股份有限公司副总裁,北京软件和信息服务交易所专家,1989 年毕业于北京 科技大学,曾经就职于冶金工业信息标准研究院,主持设计了冶金信息网并在 1997 年推出了基于中外文冶金 文献的互联网服务,2000 年加盟北京拓尔思信息技术股份有限公司,主持了新华社多媒体数据库、专利搜索 与服务系统、公安云搜索、中国专利大数据与智慧服务系统等多个大型项目。

特邀报告(Keynote):从语义到语用
演讲者:刘升平,云知声

报 告 摘 要 : 在人与人的交谈中,要理解一句话的含义,除了理解字面含义之外,还要结合多 种语境信息,才能理解用户的话语的真实意图。这些语境信息包括说话者的物理语境,如说话的时间,LOCATION 和场所,对话的语言语境,即上下文信息,以及知识语境,即说话者的 背景知识,领域知识,用户信息等。利用语境信息来理解话语的含义在语言学上称为语用。本报告除了介绍语用学之外,还进一步 出了语用计算,即把语用学应用到人与机器的对话交互中,包括口语 的理解,自然语言的生成,和人机交互框架。

个 人 简 介 : 北京大学人工智能专业博士,现任云知声资深 AI 技术专家,在 IBM 研究院工作期间,参与的两个 研究项目获得 IBM 研究成就奖;在领域内国际顶级会议上发表 5 篇学术论文;获得了 8 项美国发明技术专利;是2010,2011年国际语义Web大会 (ISWC 2010, 2011)的程序委员会委员。在云知声工作期间,领导语义 团队,成功发布了国内首个支持智能对话的公有语义云。2006 年,参与的本体开发工具包项目获得了 IBM 研 究成就奖。2010 年,作为主要技术骨干参与的医疗领域语义元数据框架包项目获得了 IBM 研究成就奖。

报告题⺫(Invited Talk):小 i 机器人在中文语义开放平台的研究与进展
演讲者:陈培华,小 i 机器人

个 人 简 介 : 陈培华毕业于上海交通大学,工学博士,现就职于上海智臻智能网络科技股份有限公司 (小 i 机器人),担任创新研究中心研究员,主要从事面向自然语言处理相关的人工智能技术研究。 报告摘要:介绍人工智能热点研究领域以及小 i 机器人在人工智能领域的布局;介绍小 i 机器人在自然语言处 理领域的研究进展——小 i 语义云平台,旨在为用户 供全面的自然语言处理能力,涉及分词、命名实体识 别、新词发现、摘要、主题发现、聚类、分类、情感分析等。

报 告 摘 要 : 介绍人工智能热点研究领域以及小 i 机器人在人工智能领域的布局;介绍小 i 机器人在自然语言处理领域的研究进展——小 i 中文语义开放平台,旨在为用户 供全面的自然语言处理能 力,涉及分词、命名实体识别、新词发现、摘要、主题发现、聚类、分类、情感分析等。

报告题目(Invited Talk):发现数据之美——大规模行业知识图谱的构建和应用
演讲者:丁军,海翼知 CEO

报 告 摘 要 :在互联网高速发展的大背景下,数据的堆积越来越严重。在大多数企业应用场景中, 用户希望一种能够存储、处理和查询海量数据的数据库系统;同时,用户还需要能够对多源异构的数据进行有效地融合组织,使其更好地被分析利用来创造价值。本报告将针对企业在数据整合与应 用方面遇到的痛点,结合对海翼知大规模行业图谱的介绍,分享整合通用数据,行业数据以及企业 私有数据的一些经验,共同探索更好的大数据消费模式。

个人简介:华东理工大学计算机博士,现任上海海翼知信息科技有限公司 CEO。长期从事知识图谱构建及应用 方面研究,国内首家 供垂直知识图谱构建及应用解决方案的大数据公司,现已有全国企业商业知识图谱,中 外创投知识图谱,海洋鱼类知识图谱,全国专利知识图谱等行业应用,相关研究也已发表在国际知名会议 ISWC 上。

 

报告题目(Invited Talk):关联挖掘——图可视化的应用实践
演讲者:赵丹,海云数据 CTO

报 告 摘 要 : 通过行业实际使用场景,探讨关联分析中图可视化的用途、作用与意义;以及实用 关联分析系统的设计思路与方法
个 人 简 介 : 天津大海云科技有限公司(海云数据)技术合伙人。长期从事数据可视化,大数据 分析,知识图谱应用等领域的研发工作。

报告题目(Invited Talk):Knowledge Graph in Japan: Open data beyond
演讲者:Nobuyuki Igata,富士通,高级研究员

Abstract: This talk introduces recent activities for building Knowledge Graph in Japan. From Open Data Charter of G8 in 2013, many Japanese organizations have published their own data with open data license. For instance, National Tax Agency (NTA) has published a dataset of corporation numbers covering 4.4 million companies, Kawasaki City published valuable information to support families with small children. However almost all of these data are described with CSV or XML format and there are no links to other datasets. In this talk, I introduce many activities in Japan to build Knowledge Graph from these open data. These activities come from two aspects; one is social events such as LOD Challenge, another is mash-up technology related to Linked Data technologies.

Speaker Bio: Nobuyuki Igata received his M.S. degree in Computer Science from Tohoku University, Sendai, Japan. He joined to Fujitsu Laboratories Ltd., Kawasaki, Japan in 1995 and currently works as a research manager in the same organization. His background is natural language processing and artificial intelligence such as information retrieval, social media analysis, Linked Data and so on. He was a visiting researcher at Massachusetts Institute of Technology, U.S.A. in 2005-2006 and held a part-time lectureship in Waseda University, Japan in 2011-2013. He is a member of Information Processing Society of Japan (IPSJ) and the Japanese Society for Artificial Intelligence (JSAI).

报告题目:知识图谱在自动应答系统上的应用和挑战
演讲者:⻙克礼,图灵机器人技术负责人

报 告 摘 要 :本次演讲中,将分享一些中文知识图谱构建的方法、策略,以及在自动应答系统中的 应用。其中,自动应答系统依赖于大规模的知识图谱,在众多模块中都使用了知识图谱,包括查 询分析,候选集打分和垂直领域问题解答。但是由于知识图谱构建的一些难点,在应用中还面临 一些挑战。我将逐一列举挑战并和大家一起探讨解决之道。

个 人 简 介 :多年来一直从事自然语言理解相关技术的研究,擅长大数据分析、中文语义解析等, 作为联合创始人创办北京光年无限科技有限公司(简称:光年无限),目前担任技术负责人一职,从事图灵机 器人大脑的研发工作,图灵机器人目前累计开发者已经超过 22 万,积累的语料库已经超过 500 亿条,在这一 领域长期处于领先。